Knowledge Engineering with Bayesian Network

Yuqing Tang

Doctoral Program in Computer Science
The Graduate Center
City University of New York
ytang@cs.gc.cuny.edu

December 6, 2010
Outline

1 Introduction

2 Knowledge engineering with Bayesian Networks

3 Summary
Knowledge Engineering with Bayesian Network (KEBN)

- KEBN: Overview
- The BN Knowledge Engineering Process
- Model construction
 - Variables and values
 - Graph Structure
 - Probabilities
 - Preferences
- Evaluation
Outline

1 Introduction

2 Knowledge engineering with Bayesian Networks

3 Summary
(Laskey, 1999)

- **Objective**: Construct a model to perform a defined task
- **Participants**: Collaboration between domain expert(s) and BN modelling expert(s), including use of automated methods.
- **Process**: iterate until “done”
 - Define task objective
 - Construct model
 - Evaluate model
Production of Bayesian/decision nets for

Decision making: Which policy carries the least risk of failure?

Forward Prediction: Hypothetical or factual. Who will win the election?

Retrodiction/Diagnosis: Which illness do these symptoms indicate?

Monitoring/control: Do containment rods need to be inserted here at Chernobal?

Explanation: Why did the patient die? Which cause exerts the greater influence?

Sensitivity Analysis: What range of probs/utilities make no difference to X?

Information value: What’s the differential utility for changing precision of X to ϵ?
KEBN lifecycle model

1) Building the BN
 - i) Structure
 - ii) Parameters
 - iii) Preferences

2) Validation
 - Sensitivity Analysis
 - Accuracy Testing

3) Field Testing
 - Alpha/Beta Testing
 - Acceptance Testing

4) Industrial Use
 - Collection of Statistics

5) Refinement
 - Updating Procedures
 - Regression Testing
Notes on Lifecycle Model

- **Phase 1: Building Bayesian Networks.**
 - Major network components: structure, parameters and utilities.
 - Elicitation: from experts, learned with data mining methods, or some combination of the two.

- **Phase 2: Evaluation.**
 - Networks need to be validated for: predictive accuracy, respecting known temporal order of the variables and respecting known causal structure.
 - Use statistical data (if available) or expert judgement.

- **Phase 3: Field Testing.**
 - Domain expert use BN to test usability, performance, etc.

- **Phase 4: Industrial Use.**
 - Requires a statistics collection regime for on-going validation and/or refinement of the networks.

- **Phase 5: Refinement.**
 - Requires a process for receiving and incorporating change i requests
 - Includes regression testing to verify that changes do not undermine established performance.
KEBN spiral model

From Laskey & Mahoney (2000)
Idea (from Boehm, Brooks): prototype-test cycle
KEBN tasks

For Bayesian Networks, identifying:
- What are the variables? What are their values/states?
- What is the graph structure? What are the direct causal relationships?
- What are the parameters (probabilities)? Is there local model structure?

When building decision nets, identifying:
- What are the available actions/decisions?
- What are the utility nodes & their dependencies?
- What are the preferences (utilities)?

The major methods are:
- Expert elicitation
- Automated learning from data
- Adapting from data
Identifying the Variables

Which are the most important variables?

- “Focus” or “query” variables
 - variables of interest
- “Evidence” or “observation” variables
 - What sources of evidence are available?
- “Context” variables
 - Sensing conditions, background causal conditions
- “Controllable” variables
 - variables that can be “set”, by intervention

Start with query variables and spread out to related variables. NB: Roles of variables may change.
Variable values/states

- Variable values must be exclusive and exhaustive
 - Naive modelers sometimes create separate (often Boolean) variables for different states of the same variable

- Types of variables
 - Binary (2-valued, including Boolean)
 - Qualitative
 - Numeric discrete
 - Numeric continuous

- Dealing with infinite and continuous variable domains
 - Some BN software (e.g. Netica) requires that continuous variables be discretized
 - Discretization should be based on differences in effect on related variables (i.e. not just be even sized chunks)
Graphical structure

Goals in specifying graph structure

- Minimize probability elicitation: fewer nodes, fewer arcs, smaller state spaces
- Maximize fidelity of model
 - Sometimes requires more nodes, arcs, states
 - Tradeoff between more accurate model and cost of additional modelling
 - Too much detail can decrease accuracy
- Drawing arcs in causal direction is not “required” BUT
 - Increases conditional independence
 - Results in more compact model
 - Improves ease of probability elicitation
- If mixing continuous and discrete variables
 - Exact inference algorithms only for the case where discrete variables are ancestors, not descendants of continuous variables
Relationships between variables I

Types of qualitative understanding can help determine local/global structure

- **Causal relationships**
 - Variables that could cause a variable to take a particular state
 - Variables that could prevent a variable taking a particular state

- **Enabling variables**
 - Conditions that permit, enhance or inhibit operation of a cause

- **Effects of a variable**

- **Associated variables**
 - When does knowing a value provide information about another variable?

- **Dependent and independent variables**
 - D-separation tests
 - Which pairs are directly connected?
 - Probabilities dependent regardless of all other variables?
Relationships between variables II

Matilda – software tool for visual exploration of dependencies (Boneh, 2002)

- Temporal ordering of variables
- Explaining away/undermining
- Causal non-interaction/additivity
- Causal interaction
 - Positive/negative Synergy
 - Preemption
 - Interference/XOR
- Screening off: causal proximity
- Explanatory value
- Predictive value
The parameters for a BN are a set of conditional probability distributions of child values given values of parents. One distribution for each combination of values of parent variables. Assessment is exponential in the number of parent variables. The number of parameters can be reduced by taking advantage of additional structure in the domain (called local model structure).
Probability Elicitation

- **Discrete variables**
 - Direct elicitation: $p = 0.7$
 - Odds (esp. for very small probs): 1 in 10,000
 - Qualitative assessment: “very high probability”
 - Use scale with numerical and verbal anchors (van der Gaag et al., 1999)
 - Do mapping separately from qualitative assessment

- **Continuous variables**
 - bi-section method
 - Elicit median: equally likely to be above and below
 - Elicty 25th percentile: bisects interval below median
 - Continue with other percentiles till fine enough discriminations

- Often useful to fit standard functional form to expert’s judgements
- Need to discreteize for most BN software
Probability elicitation

Graphical aids are known to be helpful
- pie charts
- histograms

(a)

(b)

Yuqing Tang (CUNY - GC, BC) Expert systems: Lecture 9 December 6, 2010
Probability elicitation (cont.)

- Combination of qualitative and quantitative assessment
- Automated correction of incoherent probabilities (Hope, Korb & Nicholson, 2002)
 - Minimizing squared deviations from original estimates
- Automated maxentropy fill of CPTs (Hope, Korb & Nicholson, 2002)
- Automated normalization of CPTs (Hope, Korb & Nicholson, 2002)
- Use of lotteries to force estimates (also useful for utility elicitation)
Local model structure

Not every cell in CPT is independent from every other cell. Examples:

- Deterministic nodes
 - It is possible to have nodes where the value of a child is exactly specified (logically or numerically) by its parents

- Linear relationships:
 \[X + i = a_0X_0 + \ldots a_nX_n + \epsilon_i \]

- Logit model (binary, 2 parents):
 \[
 \log_2 \frac{P(X_2|X_0, X_1)}{P(\neg X_2|X_0, X_1)} = a + bX_0 + cX_1 + dX_1X_2
 \]

- Partitions of parent state space
- Independence of causal influence
- Contingent substructures
Elicitation by Partition

(See Heckerman, 1991)
- Partition state set of parents into subsets
 - set of subsets is called a partition
 - each subset is a partition element
- Elicit one probability distribution per partition element
- Child is independent of parent given partition element
- Examples
 - \(P(\text{reportedLoc}, \text{sensor-type}, \text{weather}) \) independent of sensor type given \(\text{weather} = \text{sunny} \)
 - \(P(\text{fever} = \text{high} \ \text{disease}) \) is the same for \(\text{disease} \in \{\text{flu, measles}\} \).
Independence of Causal Influence (ICI)

- Assumption: causal influences operate independently of each other in producing effect
 - Probability that C1 causes effect does not depend on whether C2 is operating
 - Excludes synergy or inhibition

- Examples
 - Noisy logic gates (Noisy-OR, Noisy-AND, Noisy-XOR)
 - Noisy adder
 - Noisy max
 - General noisy deterministic function
Noisy-OR nodes

- Adds some uncertainty to logical OR.
 Example: *Fever* true if and only if *Cold*, *Flu*, or *Malaria* is true.
 Assumptions:
 - each cause has an independent chance of causing the effect.
 - all possible causes are listed
 - inhibitors are independent
 E.g.: whatever inhibits *Cold* from causing *Fever* is independent of whatever inhibits *Flu* from causing a *Fever*.

- Inhibitors summarised as “noise parameters”.
Noisy-OR parameters

Example

Given $P(\text{Fever} | \text{Cold}) = 0.4$, $P(\text{Fever} | \text{Flu}) = 0.8$, and $P(\text{Fever} | \text{Malaria}) = 0.9$, then noise parameters are $P(\neg \text{Fever} | \text{Cold}) = 0.6$, $P(\neg \text{Fever} | \text{Flu}) = 0.2$ and $P(\neg \text{Fever} | \text{Malaria}) = 0.1$ respectively. Probability that output node is False is the product of the noise parameters for all the input nodes that are true.

<table>
<thead>
<tr>
<th>Cold</th>
<th>Flu</th>
<th>Mal</th>
<th>$P(\text{Fev})$</th>
<th>$P(\neg \text{Fev})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>1 – 0.02</td>
<td>$0.02 = 0.2 \times 0.1$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>1 – 0.06</td>
<td>$0.06 = 0.6 \times 0.1$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>1 – 0.12</td>
<td>$0.12 = 0.6 \times 0.2$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>1 – 0.012</td>
<td>$0.012 = 0.6 \times 0.2 \times 0.1$</td>
</tr>
</tbody>
</table>

Savings: for a binary noisy-OR node with 9 parents (10 nodes in total)

- CPT requires $1024 = 2^{10}$ parameters;
- noisy-OR requires 11 parameters
Classification Tree Representation

(Boutillier et al. 1996). Example: Suppose node X has 3 parents, A, B, C (all nodes Boolean).

Savings: $CPT = 8$, tree rep = 4 parameters.
Object-oriented BNs

- Facilitate network construction wrt both structure and probabilities
- Allow representation of commonalities across variables
- Inheritance of priors and CPTs

Not widely used.
Decision Analysis

Since 1970s there have been nice software packages for decision analysis:

- Eliciting actions
- Eliciting utilities
- Eliciting probabilities
- Building decision trees
- Sensitivity analysis, etc.

See: Raiffa’s Introduction to Decision Analysis (an excellent book!)

Main differences from KEBN:

- Scale: tens vs thousands of parms!
- Structure: trees reflect state-action combinations, not causal structure, prediction, intervention
Eliciting Decision Networks

- **Action nodes**: What actions can be taken in domain?
- **Utility node(s)**:
 - What unit(s) will “utile” be measured in?
 - Are there difference aspects to the utility that should each be represented in a separate utility node?
- **Graph structure**:
 - Which variables can decision/actions affects?
 - Does the action决策 affect the utility?
 - What are the outcome variables that there are preferences about?
Model Evaluation

- **Elicitation review**
 - Review variable and value definition
 - clarity test, agreement on definitions, consistency
 - Review graph and local model structure
 - Review probabilities
 - compare probabilities with each other

- **Sensitivity analysis (Laskey, 1993)**
 - Measures effect of one variable on another

- **Case-based evaluation**
 - Run model on test of test cases
 - Compare with expert judgement or “ground truth”

- **Validation methods using data (if available)**
 - Predictive Accuracy
 - Expected value
 - Kullback-Leibler divergence
 - (Bayesian) Information reward
The need to prototype!

Why prototype?

- It’s just the best software development process overall (Brooks).
 Organic growth of software:
 - tracks the specs
 - has manageable size (at least initially)
- Attacks the comprehensiveness vs. intelligibility trade-off from the right starting point.
- Few off-the-shelf models; prototyping helps us fill in the gaps, helps write the specs
Prototypes

- Initial prototypes minimize risk
 - Don’t oversell result
 - Employ available capabilities
 - Simplify variables, structure, questions answered
 - Provide working product for assessment

- Incremental prototypes
 - Simple, quick extension to last
 - Attacks high priority subset of difficult issues
 - Helps refine understanding of requirements/approach
More recent KEBN methodologies

Parameter Estimation

- Domain Expert Data
- Assess Degree of Changes
- Assign Expert Experience
- Expert Elicitation
- Choose Resource

- Data
- Automated Learning
- Accept Changes?

- Yes
- No

Quantitative Evaluation

- Sensitivity to Parameters
- Sensitivity to Findings
- S to P Output Evaluation
- S to F Output Evaluation

- Parameter Revision
- Further Evaluation
- Accept Prototype?

- Expected Value
- Predictive Accuracy
- Elicitation Review
- Model Walkthrough

Legend

- KE, DE
- Computer program
- KE Decision Point

Structural Development & Evaluation

- Start
- Next Stage

Yuqing Tang (CUNY - GC, BC) Expert systems: Lecture 9 December 6, 2010 32 / 37
When BNs are not appropriate

- If the problem is a “one-off”, for which there is no data available and any model built won’t be used again. Bayesian networks might still be used in a one-off modeling process without going through all the KENB knowledge engineering process.
- There are no domain experts, nor useful data.
- If the problem is very complex or not obviously decomposable, it may not be worth attempting to analyze into a Bayesian network.
- If the problem is essentially one of learning a function from available data, and a “black bloc” model is all that is required
 - Artificial neural network, or
 - Other standard machine learning technique
Outline

1. Introduction

2. Knowledge engineering with Bayesian Networks

3. Summary
Summary

- Various BN structures are available to compactly and accurately represent certain types of domain features.
- There is an interplay between elements of the KE process: variable choice, graph structure and parameters.
- No standard knowledge engineering process exists as yet.
- Integration of expert elicitation and automated methods still in early stages.
- There are few existing tools for supporting the BN KE process.
 - We at Monash are developing some! (e.g. VerbalBN, Matilda)
Acknowledgments

Bayesian Artificial Intelligence.