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Abstract—In the presence of vast amount of data and
their semantic representation, it is a formidable task for
a human decision-maker to effectively locate the most
relevant facts, identify critical conflicts, and master a
big picture of the information for high quality decision
making. This paper proposes a presentation framework
which applies argumentation-based reasoning to present
relevant facts and answers. Knowledge retrieved from a
distributed semantic KB are fed into an argumentation-
based reasoning engine which re-organizes the knowledge
into coherent arguments, estimates the beliefs of the
arguments, and analyzes the pattern of conflicts among
the arguments to preliminarily determine the acceptability
of these arguments for the decision-maker to review. In
order to lower the decision-maker’s cognitive load, the
argumentation is pruned to present only the arguments and
the conflicts that most likely concern the decision-maker.
This argumentation pruning algorithm can be adapted to
enable a decision-maker to interact with the system and
navigate through the information incrementally unfolding
the argumentation constructed for the answers.

I. INTRODUCTION

Gathering relevant information from multiple sources
is a critical requirement for effective decision making
during coalition operations. Such information is intended
to improve the knowledge and situation awareness of
military commanders to accomplish the tactical tasks at
hand. The networked information systems available to
modern militaries, as well as the vast array of sensors
now employed in intelligence gathering allow an un-
precedented amount of information to be collected and
disseminated to the all decision makers. This vast amount
of information creates many opportunities, but also puts
the decision maker in danger of being provided too much
information, so raw data is seldom directly presented
to decision makers, but rather, processed, summarized
and aggregated to allow a decision maker to create a
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mental big-picture. It is widely understood that any kind
of information source (be it human or signals-based)
suffers from a degree of inconsistency and uncertainty,
as no sensor is perfect and human sources may suffer
from various biases. Thus, in order to improve the quality
of the decisions made based on such information, it is
critical to understand, process, abstract and characterize
the uncertainty and inconsistency while presenting the
resulting information.

In this paper, we propose a presentation framework
that applies argumentation-based reasoning to present
relevant facts and answers linked by reasons. The knowl-
edge are stored in distributed semantic web knowledge
bases. These knowledge bases are then required via an
ontological knowledge reasoner and answers are fed
into an argumentation-based reasoning engine which
re-organizes the knowledge into coherent arguments,
estimates the beliefs of the arguments, and analyzes
the pattern of conflicts among the arguments to prelim-
inarily determine the acceptability of these arguments
for a decision-maker to review (see Section [V). In
order to lower the decision-maker’s cognitive load, the
argumentation is pruned to present only the arguments
and the conflicts that most likely concern the decision-
maker (see Section [VI). The contribution of this paper
is bridging the gap between the knowledge and answers
with a formal model of human argumentation so as
to enable a decision-maker to review the inconsistency
and uncertainty handling in a manner similar to his/her
mental view.

II. A MOTIVATED SCENARIO

This work is motivated by the following scenario. A
military unit M need to determine whether or not to
pass through a bridge named Rainbow. Relevant infor-



mation regarding the bridge are being gathered from both
sensors and human reports. Cameras and water sensors
were installed on and under the bridge during previous
missions, and a UAV happens to fly over the bridge at the
time. The cameras on the bridge and UAV can observe
the bridge from different angles. The water sensors are
programmed to detect enemy vessels passing under the
bridge. All these sensors are federated into a networked
information system. There are also two units K and
P which are currently deployed to the area near the
bridge. Unit K is a surveillance unit which is deployed
to patrol the area. It has no capability to effectively
prevent any enemy from approaching the bridge. Unit
P is a well-armed force which is deployed in a critical
point on a path towards the bridge. Unit P is capable to
hold back the enemy to some extent. These two units
write reports into the networked information system.
The information provided by the sensors and human
reports typically contain uncertainty and inconsistency.
The decision support system need to locate the relevant
information, provide reasoning related to the decisions,
estimating the beliefs out of uncertainty, preliminarily
resolve the inconsistency for the decision-maker to re-
view.

III. KNOWLEDGE REPRESENTATION

We assume that we have a system of agents AGS =
{Ag,}. Each agent Ag, models a source of data (e.g.
sensors) or reports (e.g. human). An agent Ag, has a
knowledge base which is composed of a fact base 3;
and a rule base A;:

Both the fact base and the rule base are represented in
a predicate language £ based on a set P of symbols
with standard connectives A, V, —, — and standard
semantics is assumed in this work. We further constrain
the domain of any term of a predicate in P to be finite
and no functional symbols are allowed for any term of
a predicate in P to make the set of grounded predicates
finite. An inference rule § in a rule base A; is of the
form:

where p1, .., pm, ¢ € L. The {p;} are the set of premises
of the rule 0, and a specific p; is denoted by p;(9). cis the
conclusion of the rule, and is denoted by ¢(d). Variables
are allowed in place of terms in predicates with standard
substitution operations.

These facts and rules are stored as reified strings in
ontological knowledge bases along with their semantic
information in a manner similar to the YAGO model

[14]. The semantic information is concerned about the
predicates used in these facts and rules, such as their
identifiers and parameters. For rules, the semantic infor-
mation includes the information about the rule structure
such as antecedentPredicate for the predicates used in
the rule premises and consequentPredicate for the pred-
icates used in the rule conclusions. Due to the page
limit, we omit the details of the RDF representation.
The purpose of this RDF representation is to enable
the argumentation-based reasoning engine to retrieve
knowledge from ontological knowledge bases using a
distributed OWL-DL reasoner from our previous work
(3]

IV. ESTIMATING KNOWLEDGE WITH UNCERTAINTY

We adopt subjective logic [7]], [8]l, [LO] to probabilis-
tically characterize the uncertainty of facts, rules and the
reasoning outcomes in terms of Dempster-Shafer theory
[13]]. Let ¢ be a fact or a rule in X; U A; of an agent
Ag,. Agent Ag, measures the belief of ¢ by a belief
measurement

M; ¥, UA; — B
which maps knowledge into a belief space:
B={(b,d,u) | b>0,d>0,u>0,b+d+u=1}

where b is the probability that ¢ is actually true; d is
the probability that ¢ is actually false; and w is the
probability that ¢ is uncertain (that for example, it is
not known if ¢ is true or not).

We enable two sources of belief measurements: proba-
bility confidence intervals and discrete evidences. Prob-
ability confidences are obtained from algorithmic pro-
cessed outcomes of sensor data and human subjective
estimation of the truthfulness. Discrete evidences are
obtained from past experiences of positive and negative
outcomes.

A probability confidence interval is of the form:

CF(lp,up)

where Ip and up are, respectively, the lower bound
and upper bound of the probability. For example, a
classification algorithm which processes camera video
may output a confidence level C'F(0.40,0.92) where
0.40 is the lower bound of the probability that the
camera sees an armed force and 0.92 is the upper
bound of such a probability. Following [18]], a probability
confidence level C'F(Ip,up) can be translated into a
belief measurement as follows: 1) b = Ip, 2) u = up—>b,
and 3) d = 1 — up. For example, C'F(0.40,0.92) can be
translated into a belief measurement (0.40,0.08,0.52).



A discrete evidence is of the form
E(r,s)

where r is the number of positive outcomes and s is
negative outcomes for believing a fact, applying a rule, or
trusting another agent. Following [17]], from an evidence
E(r,s) we can derive a belief measurement (b, d, u) as
follows: 1) b = ¢(r, s),_ﬁ}L2 2)d = c(r,s)riﬁ_Q,
and 3) u = 1 — ¢(r,s). In the computation, ¢(r,s) =
z fol |fr.s(x) — 1|dz is the certainty level which is
computed from a probability-certainty density function
frs(x) = % (see [17] for more discussion).
For example, seeing 10 times positive applications and
5 times negative applications of a rule, we can measure
the belief of the rule with (0.35,0.17,0.48) using the
above equations.

A belief measurement over a conclusion supported
by a set of facts and rules can be combined to form
the belief measurements over these facts and rules. To
do this, we have a handful choices of operators in the
literature such as those in [8|] and [[17]]. For demonstration
purposes, in this paper we exemplify one operator — the
discounting operator ®.

Definition 1. Suppose M; = (b1,d1,u1) and My =

(be,da,usz), then M = My @ My = (b,d,u) where 1)
b= blbg, 2) d= b1d2, and 3) u=1-— blbg — bldg.

V. ORGANIZING RELEVANT KNOWLEDGE INTO
ARGUMENTATION

This section introduces a formal model of argumen-
tation to 1) link reasons to their conclusions, 2) link
the reasons and conclusions that are in conflicts, and 3)
apply argumentation semantics [4]] to preliminarily ana-
lyzing these conflicts in a manner analogous to human
argumentation.

A. Linking information into coherent arguments

Following the argumentation framework from our
previous work [15], we consider an argument to be
a data structure that records a coherent view of how
the facts and rules can be put together to support a
conclusion. Formally, we capture this as a directed
acyclic hyper-graph linking facts and rules from ¥ U A
to conclusions. In the following definitions, we take an
inference rule § = 2==Pm ¢ A as a directed hyper-
edge ({p1, ..., Pm },{c}). With respect to graph drawing,
we choose to represent such a hyper-edge as a sub-graph
component G = (V, E) such that V' = {p1, ..., pm, ¢, 0}
and £ = {(p1,9), ..., (pm, ), (,¢)}.

Definition 2. A rule network R is a connected directed
hyper-graph (V" E") where (1) the set of vertices V"

are elements of L; (2) the set of hyper-edges E" are
inference rules from A; (3) the initial vertices of an edge
e € E" are the premises of the corresponding rule 6; and
(4) the terminal node of that edge is the corresponding
conclusion c.

Definition 3. An argument from a knowledge base ¥
and a rule base A is a pair (h,H) where 1) H =
(VT E™) is a rule network such that every premise of
each § € E" is either a member of 3 or the conclusion
of some &' € E”, and 2) h is the only sink of E.

In accordance with the usual terminology, H = (V" E")
is the support of the argument, and h is the conclusion.
C(H) is the set of intermediate conclusions of H, the
set of all the conclusions of the § € E” other than h.
P(H) is the set of pure premises of H, the premises of
the 6 € H" that are not intermediate conclusions of H.
A(H) C A — the generic rules in A that have been
instantiated into E" through substitutions — is the set
of supporting rules of H.

Definition 4. The belief estimation of a conclusion h
given on its supporting argument (h, H) is defined as

MhH) = @ M@)o & M@)
@weP(H) SEA(H)
Correspondingly, the belief, disbelief and uncertainty is
denoted by b(h, H), d(h, H) and u(h, H).

With the concept of arguments and the belief estima-
tion, we can now capture our motivated example with
the following 6 argument{] in English.

Argument Al

Trust Unit “M” trusts the UAV (trust experiences: 10
positive and 5 negative)

The UAV does not see any abnormal situation

on the Rainbow bridge (confidence interval:

CF(0.56,0.94))

If no abnormal situation is seen on a bridge,

then the bridge is clear (rule validity: 30 posi-

tive experiences and 2 negative experiences)

Concl The Rainbow bridge is clear (argument belief:
(0.40,0.04, 0.56))

Argument A2

Trust Unit “M” trusts the camera installed on the
Rainbow bridge (trust experiences: 12 positive
and 5 negative)

Prem The camera sees an unidentifiable armed
force on the bridge (confidence interval:
CF(0.56,0.94))

Prem

Rule

'In the arguments, we annotate a premise with “Prem”, annotate a
rule with “Rule”, annotate a conclusion with “Concl”, and annotate a
premise about trust specially with “Trust”.



Rule If an unidentifiable armed force is seen on
a bridge, then the bridge is not clear (rule
validity: 9 positive experiences and 1 negative
experiences)

Concl The Rainbow bridge is not clear (argument
belief: (0.42,0.04,0.54))

Argument A3

Trust Unit “M” trusts unit “K” (trust experiences: 10

positive and 1 negative)

Unit “K” sees an armed force identified as

“id001” at a location labeled by “l1” (confi-

dence interval: C'F'(0.48,0.90))

Unit “K” knows that location “I1” is a critical

point to the Rainbow bridge (confidence inter-

val: C'F(0.48,0.90))

If an armed force is seen at a location LocX

which is a critical point to another location

LocY, then the armed force is likely moving

towards location LocY (rule validity: 20 posi-

tive experiences and 8 negative experiences)

Concl The armed force “id001” is moving to-
wards the Rainbow bridge (argument belief:
(0.27,0.05,0.67))

Argument A4

Trust

Prem

Prem

Rule

Unit “M” trusts unit “P” (trust experiences: 10

positive and 1 negative)

Unit “M” trusts unit “K” (trust experiences: 10

positive and 1 negative)

Unit “P” strongly holds location labeled by “12”

(confidence interval: C'F(0.72,0.96))

Unit “P” knows that location “I12” is a critical

point between location “I1” and the Rainbow

bridge (confidence interval: C'F'(0.48,0.90))

Unit “K” knows that the armed force “id001”

is an enemy force (confidence interval:

C'F(0.48,0.90))

Unit “K” sees an armed force identified as

“id001” at a location labeled by “l1” (confi-

dence interval: C'F'(0.48,0.90))

If an enemy force is moving from a location

LocX to another location LocZ but an inter-

mediate critical point LocY is strongly held,

then the enemy force is not able to move to

LocZ (rule validity: 20 positive experiences

and 5 negative experiences)

Concl The armed force “id001” is not able to
move to the Rainbow bridge (argument belief:
(0.39,0.02,0.59))

Argument A5

Trust Unit “M” trusts unit “K” (trust experiences: 10

positive and 1 negative)

Trust

Prem

Prem

Prem

Prem

Rule

Prem Unit “K” sees an armed force identified as
“id001” at a location labeled by “11” (confi-
dence interval: C'F'(0.48,0.90))
Unit “K” knows that the armed force “id001”
is an enemy force (confidence interval:
C'F(0.48,0.90))
Unit “K” knows that location “I1” is a critical
point to the bridge Rainbow (confidence inter-
val: C'F(0.48,0.90))
If an armed force is seen at a location LocX
which is a critical point to another location
LocY, then the armed force is likely moving
towards location LocY (rule validity: 20 posi-
tive experiences and 8 negative experiences)
If an enemy force is moving towards a location,
then such a location is not clear (rule validity:
20 positive experiences and 2 negative experi-
ences)
Concl The Rainbow bridge is not clear (argument
belief: (0.16,0.03,0.81))

Argument A6

Prem

Prem

Rule

Rule

Trust Unit “M” trusts the water sensor (trust experi-

ences: 6 positive and 4 negative)

The water sensor detect an enemy vessel pass-

ing under the Rainbow bridge (confidence in-

terval: C'F'(0.48,0.90))

If an enemy vessel is detected under a bridge,

then the bridge is not clear (rule validity: 10

positive experiences and 5 negative experi-

ences)

Concl The Rainbow bridge is not clear (argument
belief: (0.30,0.06,0.64))

Let information coming from the bridge camera, the
UAV, the water-sensor (“W-Sensor”), unit “M” and “K”
be represented in the language £ defined in Section
arguments A1—AG6 can be automatically generated with
the algorithms and implementation described in [15]],
[16]. The graphical representation of these arguments
can found in Figure [I] where each argument is bounded
by a box. Inside each argument, information sources (e.g.
camera, UAYV, and etc.) are depicted as circles, the input
facts and conclusions are depicted by inner boxes, and
rules are depicted by ovals. For simplicity, only belief
measurements on conclusions are displayed.

Prem

Rule

B. Linking and filtering conflicting information

A key notion in argumentation is that arguments
defeat one another — that is, one argument casts doubt
on another by, for example, casting doubt on one of
the premises of the second argument — and that it is
possible to take a set of arguments that interact in this
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Fig. 1: An argumentation graph

way and analyze their acceptability. This notion of defeat
re-establishes conflicts among the information as defeat
links among the arguments.

Definition 5. An argument (hy, Hy) defeats an argu-
ment (ho, Ha) if (1) (h1, H1) rebuts argument {hs, Hy)
iff h1 = —ha; (2) (h1, Hy) premise-undercuts (ho, Hs)
iff there is a premise p € P(Hs) such that hy = —p; (3)
(h1, Hy) intermediate-undercuts (ho, Hs) iff there is an
intermediate conclusion ¢ € C(Hz) such that ¢ # ha
and hq —¢; and (4) (hy,Hy) inference-undercuts
(h2, Hy) iff there is an inference rule 6 € A(Hz) such
that 6 = P=2Pr and hy = —(py A ... App — c).

In any case in which (hy, H1) defeats (ho, Ha), (h1, H1)
is said to be a defeater of (ho, Hs), and (hg, Hs) is
said to be the defeatee. The relation DFT collects all
pairs ({hy, H1), (ho, H3)) such that (hy, H;) defeats
(ha, Ha).

To arbitrate two arguments that defeat each other, a
preference relation PREF over arguments can be de-
rived from their belief measurements to capture relative
strength of the arguments.

Definition 6. Given rwo arguments Ay = (hy, Hy) and
Ay = (hg, H3) with belief measurements computed, we
can define a preference PREF as (A1, A3) € PREF jff
(1) b(hl, Hl) > b(hQ,HQ), or(2) b(hl, Hl) = b(h27H2)

and u(hl,Hl) > u(hQ,Hg).

This is essentially comparing the two probability confi-
dence intervals of the two arguments.

Definition 7. Let PREF be a preference relation and
DFT be a defeat relation on a set arguments ARG.
A preference-refined defeat relation PDFT can be de-
fined for any two arguments A, and As in ARG as:
(Al,AQ) € PDFT l:[f(Al,AQ) € DFT but (AQ,Al) ¢
PREF.

With a preference-refined defeat relation PDFT, we ob-
tain an abstract preference-based argumentation frame-
work

AFD = (ARG, PDFT)

which is in essence by discarding defeat relations where
the defeatee is preferred to the defeater. Now with
preference derived from belief measurement, our running
scenario becomes Figure

C. Analyzing acceptability

With a preference-based argumentation framework
AFD = (ARG, PDFT), the acceptability of an argument
A can be characterized by the following intuitive prin-
ciples modeling human argumentation:

1) A is accepted (labeled as “IN”) if it has no de-
featers, or all its defeaters are rejected.
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Fig. 2: Abstract argumentation modified by belief measurements

2) A is rejected (labeled as “OUT”) if it has at least
one accepted defeater.

3) Otherwise, the acceptability of A is undecided
(labeled as “UNDEC”).

Formally, we define a legal labeling function L,.. for
argumentation

Lace : ARG — {IN, OUT, UNDEC}

if it satisfies the above three principles. Note that it is im-
possible to have two or more arguments with conflicting
conclusions to be accepted at the same time (by the 2nd
principle). This guarantees that the set of conclusions
of the accepted arguments is consistent. However, it is
possible to have two or more arguments with conflicting
conclusions to be rejected at the same time. Discussions
on on argumentation semantics and labeling are out of
the scope of this paper. References can be found in [1[]-
(4], (6], [11].

With the implementation in our previous work [15],
[16], an argumentation semantic labeling can be com-
puted for our running scenario. The result is shown in
Figure [2| where accepted (“IN”) arguments are in blue
color, and rejected (“OUT”) arguments are in gray color.
In Figure 2] we have 3 accepted arguments —A2, A4
and A6 — of which two support that the Rainbow
bridge is not clear, and one supports that “id001” is
not moving to the bridge. We have another 3 rejected
arguments — A1, A3 and A5 — of which one supports
that the Rainbow bridge is clear, one supports that the
Rainbow bridge is not clear, and another one supports
that “id001” is moving to the bridge. Looking at the
details, A4 concludes that the enemy is not moving to
Rainbow because the enemy will be held back by unit
P. A4 has no defeaters, so A4 is “IN”. As a result, A5
which is effectively undercut by A4 is “OUT”. Zooming
into the details, A4 defeats A5 by defeating a sub-
argument A3 of A5 — A3 is “OUT”. Both A2 and A6
have no defeaters, therefore they are both “IN”. Now the
preliminary analysis of the argumentation acceptability is

completed. At this point, the decision-maker might want
to manually modify the status of some arguments (e.g.
from “IN” to “OUT”, “UNDEC” to “IN”, and etc.) if
he/she has external reasons (e.g based on the information
which is not captured in the automatic system) to do so.
After the decision-maker manually modified the argu-
ment status, the automatic system applies the 3 principles
iteratively to update the other arguments accordingly
enabling the decision-maker to see how his/her external
reasoning can be propagated to other arguments. We will
evaluate the utility of this approach with a user study in
our future research.

VI. PRESENTING ARGUMENTATION

The argumentation, belief measurement and the ac-
ceptability analysis established in the previous sections
capture a logical structure over the facts, the answers
and their conflicts. The logical structure is readily un-
derstood by a decision-maker. However, in bigger net-
worked information systems and real word scenarios,
the argumentation graph easily become formidable large.
Algorithm |1| provides a basic presentation framework to
take into account the end user’s need to display only
a subgraph of the argumentation that the end user is
concerned about. Algorithm [I] takes as parameters an
ontology O composed of the predicates which the end
users would be interested in, an argumentation graph G
which is established during the reasoning stage, and a
node X in G which corresponds to a conclusion with
respect to a query. Overall, Algorithm [I] enables us to
achieve the follows:

Interactive exploration: Starting with the conclusion
of an argument which is “IN” and has the highest
belief measurement, then the user clicks on a conclusion
node to expand the argument of the conclusion. From
this expanded argument, the user can continue clicking
on the premises, the intermediate conclusions and the
rules which have defeaters to expand into a deeper
investigation related to the answers. This can be achieved



by incrementally enlarge the set of predicates in O.
Presenting alternative answers: We first retrieve the
relevant concepts on trust and the query from the
meta-information ontology knowledge base: Ogr =
{clear} U {trust}. Then we invoke Algorithm |I| with
Ogqr. For example, applying these two steps on the argu-
mentation graph of Figure[T] we can obtain Figure[3] The
decision-maker now can focus on alternative answers
along with their acceptability, their belief measurements
and the information sources.

Exploring defeat links: We first retrieve the relevant
concepts on trusts, the query, and the defeating points
from the meta-information ontology knowledge base:
Ogrp = Ogr L O (DFT) where O (DFT) is the
concepts which is with distance 1 to the defeating points
in the argumentation graph. It can be obtained by investi-
gating the argumentation graph near the defeating points:
OFY(DFT) = {movingTo, seeArmedForce,enemy}.
The result is in Figure 4| where the defeating reasoning
from unit “P” is highlighted.

Proactive presentation for the underlying tasks:
Through modeling the underlying tasks along with their
information plans [9]], we can learn what are the concepts
related to the next steps in the underlying tasks and then
carry out the argumentation-based reasoning and bring
up the most relevant subgraph of the argumentation to
the users. This is one of our future direction.

VII. CONCLUSIONS

In this paper, we propose a presentation framework
that applies argumentation-based reasoning to present
relevant facts and answers linked by reasons. An
argumentation-based reasoning engine re-organizes the
knowledge into coherent arguments, estimates the beliefs
of the arguments, and analyzes the pattern of conflicts
among the arguments to preliminarily determine the
acceptability of these arguments for a decision-maker to
review. The resulting argumentation is pruned to present
only the arguments and the conflicts that most likely
concern the decision-maker. This presentation is based
on a formal model of human argumentation making
the presentation approximate a human decision-maker’s
mental model of the information.

Future work concerns the integration of inconsistency
and uncertainty handling with the distributed reasoner
from our previous work [5] for scalability and effi-
ciency. Another direction is to adapt the presentation to
the human user’s mental model. This can be achieved
through accommodating human user’s mental ontology
profile in the ontological knowledge bases and reason
about the concepts to be used in the presentation. To
link facts to conclusions, a large collection of rules are

Algorithm 1: Prune reasoning using ontology:
PruneReasoning (O, G, X):
Input: (1) O: A set of relevant concepts; (2)
G = (V, E): An argumentation graph; (3)
X: A node in the argumentation graph
if X has be investigated before then
| return {Node(X)} ;
if X € O then
Create a node u = Node(X) for X;
for each (u,v) € E do
S + PruneReasoning(O,G,v);
for each w € S do
| Add (u,w) to E ;

return {u};

else

D « 0

for each v such that (X,v) € E do
S < PruneReasoning(O, G, v);

D+ DUS,
if X is a conclusion and D contains no

elements of the argument concluded on X then
| return 0;
return D;

needed. This requires efforts. One possible remedy is
to automatically learn the inference rules from free text
reports or knowledge bases of the human user’s using
the approaches such as [12]. As we enable inconsistency
and uncertainty handling, the requirement for correctness
and accuracy of the rule learning can be relaxed to some
extent. Finally, we need to develop evaluation model to
study the effectiveness of the presentation.
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